Search results for " mesenchymal stromal cells"

showing 10 items of 12 documents

Wharton’s Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro

2019

Therapeutic options for end-stage organ failure are often limited to whole organ transplantation. The tolerance or rejection of the transplanted organ is driven by both early non-specific innate and specific adaptive responses. The use of mesenchymal stromal cells (MSCs) is considered a promising tool in regenerative medicine. Human umbilical cord (HUC) is an easily available source of MSCs, without relevant ethical issues. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs), showed consistent immunomodulatory features that may be useful to promote immune tolerance in the host after transplantation. Few data are available on the phenotype of WJ-MSCs in situ. We investigated the expression of i…

0301 basic medicineSettore BIO/17 - IstologiaB7 AntigensT cellIn Vitro TechniquesBiologyLymphocyte ActivationRegenerative medicineCell therapyUmbilical CordImmune toleranceImmunomodulation03 medical and health sciences0302 clinical medicineWharton's jellymedicineHumansWharton JellyCD276Cells CulturedCell ProliferationStem cellMesenchymal stem cellCell DifferentiationMesenchymal Stem CellsHuman umbilical cordCell biologyTransplantationTolerance induction030104 developmental biologymedicine.anatomical_structureB7-H3030220 oncology & carcinogenesisLymphocyte inhibitionRegenerative medicineCytokinesWharton’s jelly mesenchymal stromal cellsStem cell
researchProduct

Mesenchymal stromal cells and rheumatic diseases: new tools from pathogenesis to regenerative therapies

2015

In recent years, mesenchymal stromal cells (MSCs) have been largely investigated and tested as a new therapeutic tool for several clinical applications, including the treatment of different rheumatic diseases. MSCs are responsible for the normal turnover and maintenance of adult mesenchymal tissues as the result of their multipotent differentiation abilities and their secretion of a variety of cytokines and growth factors. Although initially derived from bone marrow, MSCs are present in many different tissues such as many peri-articular tissues. MSCs may exert immune-modulatory properties, modulating different immune cells in both in vitro and in vivo models, and they are considered immune-…

AdultCancer ResearchpathogenesiCellular differentiationImmunologyCell- and Tissue-Based TherapyBone Marrow CellsMesenchymal Stem Cell TransplantationRegenerative MedicineRegenerative medicineAutoimmune DiseaseAutoimmune DiseasesChondrocytesImmune systemIn vivoBone MarrowRheumatic DiseasesmedicineHumansImmunology and Allergyrheumatic diseaseGenetics (clinical)TransplantationOsteoblastsMesenchymal Stromal Cellbusiness.industryOsteoblastMesenchymal stem cellMesenchymal Stem CellsCell DifferentiationCell BiologyChondrocyteClinical trialmedicine.anatomical_structureregenerative therapyOncologymesenchymal stromal cells; pathogenesis; regenerative therapy; rheumatic disease; Adult; Autoimmune Diseases; Bone Marrow; Bone Marrow Cells; Cell Differentiation; Cell- and Tissue-Based Therapy; Chondrocytes; Humans; Mesenchymal Stem Cell Transplantation; Mesenchymal Stromal Cells; Osteoblasts; Regenerative Medicine; Rheumatic DiseasesImmunologyBone Marrow CellBone marrowStem cellbusinessHuman
researchProduct

Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature oste…

2015

// Maria Rita Pitari 1 , Marco Rossi 1 , Nicola Amodio 1 , Cirino Botta 1 , Eugenio Morelli 1 , Cinzia Federico 1 , Annamaria Gulla 1 , Daniele Caracciolo 1 , Maria Teresa Di Martino 1 , Mariamena Arbitrio 2 , Antonio Giordano 3, 4 , Pierosandro Tagliaferri 1 , Pierfrancesco Tassone 1, 4 1 Department of Experimental and Clinical Medicine and T. Campanella Cancer Center, Magna Graecia University, S. Venuta University Campus, Catanzaro, Italy 2 ISN-CNR, Roccelletta di Borgia, Catanzaro, Italy 3 Department of Human Pathology and Oncology, University of Siena, Siena, Italy 4 Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology,…

Bone diseaseMessengerOsteoclastsTumor Microenvironment3' Untranslated RegionsMultiple myelomaTumorbiologyMesenchymal Stromal CellsRANKLProtein Inhibitors of Activated STATUp-Regulationmedicine.anatomical_structureOncologyRANKLmiRNAsmiR-21MiRNAMultiple MyelomaMiR-21; MiRNAs; Multiple myeloma bone disease; OPG; RANKL; 3' Untranslated Regions; Bone Marrow Cells; Bone Resorption; Cell Adhesion; Cell Line Tumor; Coculture Techniques; HEK293 Cells; Humans; Interleukin-6; Lentivirus; Mesenchymal Stromal Cells; MicroRNAs; Molecular Chaperones; Multiple Myeloma; Osteoclasts; Osteoprotegerin; Protein Inhibitors of Activated STAT; RANK Ligand; RNA Messenger; STAT3 Transcription Factor; Stromal Cells; Tumor Microenvironment; Up-Regulation; OncologyResearch Papermusculoskeletal diseasesSTAT3 Transcription FactorStromal cellBone Marrow CellsBone resorptionCell LineOsteoprotegerinCell Line TumormedicineCell AdhesionHumansRNA MessengerBone Resorptionbusiness.industryInterleukin-6LentivirusRANK LigandOsteoprotegerinMesenchymal Stem Cellsmedicine.diseaseMolecular medicineCoculture TechniquesMicroRNAsmultiple myeloma bone diseaseHEK293 CellsImmunologyCancer researchbiology.proteinRNAOPGBone marrowStromal CellsbusinessMolecular ChaperonesOncotarget
researchProduct

Umbilical cord versus bone marrow-derived mesenchymal stromal cells.

2012

incetheplacentaisapostnatal tissue and discarded asmedical waste, harvesting stem cells from this organrepresents a noninvasive and ethically conductive proce-dure. Perinatal stem cells isolated from amnion, chorion,umbilical cord, and cord blood are increasingly viewedas reliable sources of mesenchymal stromal cells (MSCs)alternative to bone marrow-derived ones (BM-MSCs),which are currently the most commonly used in clinicalapplications [1–5].Perinatal stem cells are a bridge between embryonic stemcells (ESCs) and adult stem cells (such as BM-MSCs). Theyshare many characteristics of both cells [1,6]. Considering thestructural complexity of the term ‘‘placenta,’’ we have fo-cused our attent…

Cellular differentiationCellsBone Marrow CellsBiologyCell therapyHumansSettore BIO/13 - BIOLOGIA APPLICATAWharton JellyCell ShapeCells CulturedStem cell transplantation for articular cartilage repairCell ProliferationCulturedMesenchymal Stromal CellsSettore BIO/16 - Anatomia UmanaMesenchymal stem cellMesenchymal Stem CellsCell DifferentiationCell BiologyHematologyBone Marrow Cells; Cell Differentiation; Cell Proliferation; Cell Shape; Cells Cultured; Humans; Mesenchymal Stromal Cells; Stem Cell Research; Wharton JellyStem Cell ResearchEmbryonic stem cellCell biologyCord bloodImmunologymesenchymal stem cells differentiation markers umbilical cord wharton's jelly bone marrow adipose tissueStem cellDevelopmental BiologyAdult stem cell
researchProduct

Evidence for a common progenitor of epithelial and mesenchymal components of the liver

2013

Tissues of the adult organism maintain the homeostasis and respond to injury by means of progenitor/stem cell compartments capable to give rise to appropriate progeny. In organs composed by histotypes of different embryological origins (e.g. The liver), the tissue turnover may in theory involve different stem/precursor cells able to respond coordinately to physiological or pathological stimuli. In the liver, a progenitor cell compartment, giving rise to hepatocytes and cholangiocytes, can be activated by chronic injury inhibiting hepatocyte proliferation. The precursor compartment guaranteeing turnover of hepatic stellate cells (HSCs) (perisinusoidal cells implicated with the origin of the …

Cellular differentiationLiver Stem CellDesminMice0302 clinical medicineMESH: AnimalsMESH: Nerve Tissue ProteinsHepatic stellate cellCells Cultured0303 health sciencesMesenchymal Stromal CellStem CellsCell DifferentiationCell biologyEndothelial stem cellMESH: DesminMESH: Models AnimalLiverMESH: Epithelial CellsDifferentiationModels Animal030211 gastroenterology & hepatologyStem cellMESH: Stem Cell Transplantationhepatic stellate cell; cell transplantation; liver stem cell; differentiationMESH: Cells CulturedMESH: Cell DifferentiationCell transplantation; Differentiation; Hepatic stellate cell; Liver stem cell; Animals; Cell Differentiation; Cell Line; Cell Lineage; Cell Proliferation; Cells Cultured; Desmin; Epithelial Cells; Glial Fibrillary Acidic Protein; In Vitro Techniques; Liver; Mesenchymal Stromal Cells; Mice; Mice Nude; Models Animal; Nerve Tissue Proteins; Stem Cell Transplantation; Stem Cells; Cell Biology; Molecular BiologyClinical uses of mesenchymal stem cellsMice NudeNerve Tissue ProteinsMESH: Stem Cells[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyIn Vitro TechniquesCell Line03 medical and health sciencesStem CellMESH: Cell ProliferationGlial Fibrillary Acidic ProteinMESH: Mice NudeAnimalsCell LineageProgenitor cellMESH: MiceMolecular Biology030304 developmental biologyCell ProliferationOriginal PaperEpithelial CellAnimalIn Vitro TechniqueMesenchymal stem cellEpithelial CellsMesenchymal Stem CellsCell BiologyMESH: Cell LineageMESH: Cell LineLiver stem cellNerve Tissue ProteinHepatic stellate cellMESH: Mesenchymal Stromal CellsCell transplantationMESH: LiverStem Cell Transplantation
researchProduct

Human Amnion-Derived Mesenchymal Stromal Cells: A New Potential Treatment for Carbapenem-Resistant Enterobacterales in Decompensated Cirrhosis

2022

Background: Spontaneous bacterial peritonitis (SBP) is a severe and often fatal infection in patients with decompensated cirrhosis and ascites. The only cure for SBP is antibiotic therapy, but the emerging problem of bacterial resistance requires novel therapeutic strategies. Human amniotic mesenchymal stromal cells (hA-MSCs) possess immunomodulatory and anti-inflammatory properties that can be harnessed as a therapy in such a context. Methods: An in vitro applications of hA-MSCs in ascitic fluid (AF) of cirrhotic patients, subsequently infected with carbapenem-resistant Enterobacterales, was performed. We evaluated the effects of hA-MSCs on bacterial load, innate immunity factors, and macr…

QH301-705.5Placentacirrhosis; ascitic fluid; spontaneous bacterial peritonitis; human amnion-derived mesenchymal stromal cells; carbapenem-resistant Enterobacterales; pattern recognition molecules; ficolins; complement; placentaComplementEnterobacterPeritonitisMesenchymal Stem Cell Transplantationbeta-Lactam ResistanceCatalysisImmunomodulationInorganic ChemistryPhagocytosisSpontaneous bacterial peritonitisHumansHuman amnion-derived mesenchymal stromal cellsAmnionBiology (General)Physical and Theoretical ChemistryQD1-999Complement ActivationMolecular BiologySpectroscopyAscitic fluidMacrophagesCarbapenem-resistant EnterobacteralesOrganic ChemistryPattern recognition moleculesEnterobacteriaceae InfectionsMesenchymal Stem CellsPeritoneal FibrosisFicolinsComplement System ProteinsGeneral MedicineBacterial LoadComputer Science ApplicationsChemistryTreatment OutcomeCirrhosisCarbapenemsReceptors Pattern RecognitionDisease SusceptibilityInflammation MediatorsBiomarkersInternational Journal of Molecular Sciences; Volume 23; Issue 2; Pages: 857
researchProduct

Wharton’s Jelly Mesenchymal Stromal Cells Support the Expansion of Cord Blood–derived CD34+Cells Mimicking a Hematopoietic Niche in a Direct Cell–cel…

2018

Wharton’s jelly mesenchymal stromal cells (WJ-MSCs) have been recently exploited as a feeder layer in coculture systems to expand umbilical cord blood–hematopoietic stem/progenitor cells (UCB-HSPCs). Here, we investigated the role of WJ-MSCs in supporting ex vivo UCB-HSPC expansion either when cultured in direct contact (DC) with WJ-MSCs or separated by a transwell system or in the presence of WJ-MSC–conditioned medium. We found, in short-term culture, a greater degree of expansion of UCB-CD34+cells in a DC system (15.7 ± 4.1-fold increase) with respect to the other conditions. Moreover, in DC, we evidenced two different CD34+cell populations (one floating and one adherent to WJ-MSCs) with …

Settore BIO/17 - Istologia0301 basic medicineStromal cellextracellular matrixCell Culture TechniquesBiomedical EngineeringCD34lcsh:MedicineAntigens CD34Brief Communication03 medical and health sciencesWharton's jellyHumansWharton JellyProgenitor cellCoculture TechniqueColony-forming unitTransplantationChemistrylcsh:RMesenchymal stem cellMesenchymal Stem CellsCell DifferentiationHematopoietic Stem CellCell BiologyHematopoietic Stem CellsFetal BloodADP-ribosyl Cyclase 1Coculture TechniquesCell biologysecretomeMesenchymal Stem Cell030104 developmental biologyhematopoietic nicheCord bloodhematopoietic stem and progenitor cell expansionWharton’s jelly mesenchymal stromal cellWharton’s jelly mesenchymal stromal cellsCell Culture TechniqueHumanHoming (hematopoietic)Cell Transplantation
researchProduct

Mesenchymal Stromal cells from Wharton's jelly (MSCs): coupling their hidden differentiative program to their frank immunomodulatory phenotype.

2018

No abstract

Settore BIO/17 - IstologiaWharton's jelly mesenchymal stromal cells differentiation immunomodulation umbilical cord stem cells
researchProduct

The Immunomodulatory Features of Mesenchymal Stromal Cells Derived from Wharton’s Jelly, Amniotic Membrane, and Chorionic Villi In Vitro and In Vivo …

2016

This chapter focuses on the immunomodulatory properties of placental mesenchymal stromal cells (MSCs) derived from the amniotic membrane, umbilical cord, and chorionic villi. Within the amniotic membrane (AM), we discuss the immunomodulatory properties of the two main cell populations that can be isolated from AM: human amniotic mesenchymal stromal cells (hAMSCs) and human amniotic epithelial cells (hAECs). Within the umbilical cord, several compartments have been described, including the amniotic compartment, the Wharton’s jelly (WJ) compartment, and the vascular and perivascular compartment, but herein attention is focused on the properties of human WJ MSCs (hWJMSCs). Since different isol…

Settore BIO/17 - IstologiaWharton’s JellyUmbilical cord Wharton's jelly placenta mesenchymal stromal cells stem cells chorionic villi amniotic membrane regenerative medicine differentiation immeune modulationSettore BIO/16 - Anatomia UmanaSettore BIO/13 - BIOLOGIA APPLICATA
researchProduct

Current Perspectives on Adult Mesenchymal Stromal Cell-Derived Extracellular Vesicles: Biological Features and Clinical Indications.

2022

Extracellular vesicles (EVs) constitute one of the main mechanisms by which cells communicate with the surrounding tissue or at distance. Vesicle secretion is featured by most cell types, and adult mesenchymal stromal cells (MSCs) of different tissue origins have shown the ability to produce them. In recent years, several reports disclosed the molecular composition and suggested clinical indications for EVs derived from adult MSCs. The parental cells were already known for their roles in different disease settings in regulating inflammation, immune modulation, or transdifferentiation to promote cell repopulation. Interestingly, most reports also suggested that part of the properties of pare…

Settore BIO/17 - Istologiaadult mesenchymal stromal cellsbone marrowinflammationregenerationcell-free therapiescancerMedicine (miscellaneous)tissue repairextracellular vesiclesGeneral Biochemistry Genetics and Molecular Biologyadipose tissueBiomedicines
researchProduct